Buscar en este blog

* 1960 Demostración no astronómica de la Teoria de la Relatividad.


El 6 de marzo, dos físicos estadounidenses, Robert Vivian Pound y Glen Rebka, Jr. , informaron de que habían llevado a cabo un experimento basado en el efecto Mossbauer y descubierto que los fotones no eran absorbidos. Y lo que es más, luego movieron hacia abajo el cristal receptor muy despacio, para que su movimiento incrementase muy levemente la energía de colisión con los fotones que entraban. Midieron la proporción de movimiento descendente que originaría el suficiente incremento de energía para producirse la pérdida de relatividad general y para permitir que los fotones fuesen absorbidos con fuerza. De esta manera determinaron exactamente cuanta energía perdían los rayos gamma al ascender contra la atracción gravitatoria de la Tierra, y descubrieron que el resultado coincidía con la predicción de Einstein hasta el 1 por 100. Ésta fue la primera demostración real e indiscutible de que la relatividad general era correcta, y fue la primera demostración llevada a cabo por completo en un laboratorio. Hasta entonces, las tres pruebas clásicas habían sido siempre de tipo astronómico y habían requerido mediciones con algunas inexactitudes que habían sido casi imposibles de reducir. En el laboratorio, todo podía ser perfectamente controlado, y la precisión era mucho más elevada. De forma también asombrosa, el efecto Móssbauer no requería una enana blanca, ni siquiera el Sol. El comparativamente débil campo gravitatorio de la Tierra era suficiente, y en una diferencia de altura no mayor que la distancia entre el sótano y el tejado de un edificio de seis pisos.

El efecto Mossbauer:

El físico alemán Rudolf Ludwig Móssbauer recibió su doctorado en 1958, a la edad de veintinueve años, y el mismo año anunció lo que habría de llamarse «el efecto Móssbauer», por el que recibió el premio Nobel de Física en 1961.
El efecto Móssbauer implica la emisión de rayos gamma por ciertos átomos radiactivos. Los rayos gamma consisten en fotones de energía, y su misión induce un retroceso en el átomo que realiza la emisión. El retroceso hace disminuir un poco la energía del fotón del rayo gamma. Normalmente, la cantidad de retroceso varia de un átomo a otro por varias razones, y el resultado es que cuando los fotones se emiten en cantidad por una colección de átomos, son aptos para tener una amplia extensión de contenido energético.
Sin embargo, hay condiciones en las que los átomos, cuando existen en un cristal algo grande y ordenado, emitirán fotones de rayos gamma experimentando el retroceso todo el cristal como una unidad. Dado que el cristal tiene una masa enorme en comparación con un solo átomo, el retroceso que sufre es insignificantemente pequeño. Todos los fotones se emiten con toda la energía, por lo que el rayo posee una extensión de energía de prácticamente cero. Esto es el efecto Móssbauer.
Los fotones de rayos gamma de exactamente el contenido de energía emitido por un cristal en estas condiciones serán absorbidos con fuerza por otro cristal del mismo tipo. Si el contenido energético es incluso muy ligeramente distinto en una u otra dirección, la absorción por un cristal similar quedará en extremo reducida.
Pues bien, supongamos entonces que un cristal está emitiendo fotones de rayos gamma en el sótano de un edificio, y una corriente de fotones se dispara hacia arriba, hacia un cristal absorbente que está en el tejado, 20 metros más arriba. Según la relatividad general, los fotones que suben contra la atracción de la gravedad de la Tierra perderían energía. La cantidad de energía que perderían sería en extremo pequeña, pero suficiente para impedir que el cristal del tejado la absorbiera.




Dion And The Belmonts - Runaround sue

SITIOS FUENTE DEL BLOG (ACTUALIZANDO)▼

PREGUNTAS Y RESPUESTAS▼

 
Subir Bajar